В каких мышцах какие волокна. Типы мышечных волокон. Можно ли сочетать тренинг ММВ с БМВ? Если да, то как

Мы рассмотрели разные способы извлечения энергии. Логично предположить, что и у мышечных волокон существует некая предрасположенность к получению энергии тем или иным способом. Прежде чем мы рассмотрим типы мышечных волокон, кратко восстановим в памяти необходимые для понимания вопроса знания анатомии.

Мышечная ткань бывает трех видов:

  • гладкая мышечная ткань (входит в состав стенок внутренних органов: кровеносных и лимфатических сосудов, мочевыводящих путей, пищеварительного тракта);
  • поперечно-полосатая сердечная мышечная ткань (из нее состоит сердце);
  • поперечно-полосатая скелетная мышечная ткань (скелетные мышцы, а также стенки глотки, верхней части пищевода, язык, глазодвигательные мышцы).
Мы будем рассматривать, соответственно, последний вид - поперечно-полосатую скелетную мышечную ткань, из которой состоят наши мышцы и главным свойством которой является произвольность сокращений и расслаблений.

В теле человека примерно 600 мышц (разными методами подсчета получают несколько разные цифры). Самые маленькие прикреплены к мельчайшим косточкам, расположенным в ухе. Самые крупные - большие ягодичные мышцы - приводят в движение ноги. Самые сильные мышцы - икроножные и жевательные.

Мужчины обладают большей мышечной массой, чем женщины: мышечная масса женщин составляет примерно 30-35%, а у мужчин 42-47% от общей массы тела. У особо выдающихся спортсменов этот процент может доходить до 60 и более. Зато у женщин значительно больше процент жировой ткани и женский организм обладает бОльшей способностью использовать жирные кислоты в качестве источника энергии.

Распределение мышечной массы по телу у мужчин и женщин также не одинаково. Подавляющая часть мышечной массы у большинства женщин расположена в нижней части тела, а в верхней части тела мышечные объемы не велики, мышцы мелкие и часто совсем нетренированные.

Строение мышцы

Каждая скелетная мышца состоит из множества тонких мышечных волокон , толщиной 0,05-0,11 мм и длиной до 15 см. Мышечные волокна собраны в пучки по 10-50 штук, окруженные соединительной тканью. Сама мышца тоже окружена соединительной тканью (фасцией). Мышечные волокна составляют 85-90% массы мышцы, остальную часть составляют кровеносные сосуды и нервы, проходящие между ними. Мышечные волокна плавно переходят на концах в сухожилия, а сухожилия крепятся к костям.

В саркоплазме (цитоплазме) мышечных волокон содержится множество митохондрий , которые выполняют роль электростанций, где проходят процессы обмена веществ и скапливаются вещества богатые энергией, а также другие вещества, необходимые для обеспечения энергетические потребностей. Каждая мышечная клетка имеет тысячи митохондрий, которые составляют 30-35% ее массы. Митохондрии выстраиваются цепочкой вдоль миофибрилл , тонких мышечных нитей, благодаря которым и происходит сокращение-расслабление мышц. Одна клетка содержит обычно несколько десятков миофибрилл. Длина миофибриллы может достигать нескольких сантиметров, а масса всех миофибрилл мышечной клетки составляет около 50% ее общей массы. Таким образом, толщина мышечного волокна главным образом будет зависеть от количества находящихся в нем миофибрилл и от поперечного сечения миофибрилл. Миофибриллы в свою очередь состоят из множества крохотных саркомеров.

Строение мышцы

Целенаправленные занятия физкультурой и спортом приводят к :

  • увеличению количества миофибрилл в мышечном волокне;
  • увеличению поперечного сечения миофибрилл;
  • увеличению размеров и количества митохондрий, снабжающих миофибриллы энергией;
  • увеличиваются запасов энергоносителей в мышечной клетке (гликогена, фосфатов и т.д.).
В процессе занятий сначала увеличивается сила мышцы, в последствии увеличивается толщина мышечного волокна, что в конечном итоге приводит к общему увеличению поперечного сечения всей мышцы. Процесс увеличения толщины мышечных волокон называется гипертрофия, а уменьшения - атрофия.

Сила и мышечная масса увеличиваются не пропорционально: если мышечная масса увеличивается, например, вдвое, то мышечная сила при этом увеличится втрое.

Биопсии мышечной ткани показали более низкий процент миофибрилл в мышечных волокнах женщин, чем у мужчин (даже у спортсменок высокой квалификации). Вкупе со значительно более низким уровнем тестостерона (тестостерон заставляет "выжимать" из мужского организма максимум), традиционная у мужчин тренировка на увеличение мышечной массы с большими весами в малом числе повторений оказывается малоэффективной для большинства женщин. Поэтому женщины и не могут нарастить огромные мышцы, как бы не старались. Количество мышечных волокон в конкретной мышце задано генетически и в процессе тренировок не изменяется. Поэтому человек с бОльшим количеством мышечных волокон в конкретной мышце имеет бОльший потенциал для развития этой мышцы, нежели другой человек, имеющий меньшее количество мышечных клеток в этой мышце.

Красные и белые мышечные волокна

В зависимости от сократительных свойств, гистохимической окраски и утомляемости мышечные волокна подразделяют на две группы - красные и белые.

Красные мышечные волокна

Красные мышечные волокна – это медленные волокна небольшого диаметра, которые используют для получения энергии окисление углеводов и жирных кислот (аэробная система энергообразования). Другие названия этих волокон: медленные или медленносокращающиеся мышечные волокна, волокна 1 типа, а также SТ-волокна (slow twitch fibres).

Медленные волокна называют красными из-за красной гистохимической окраски, обусловленной содержанием в этих волокнах большого количество миоглобина - пигментного белка красного цвета, который занимается тем, что доставляет кислород от капилляров крови вглубь мышечного волокна.

Красные волокна имеют большое количество митохондрий, в которых происходит процесс окисления для получения энергии ST-волокна окружены обширной сетью капилляров, необходимых для доставки большого количества кислорода с кровью.

Медленные мышечные волокна приспособлены к использованию аэробной системы энергообразования : сила их сокращений сравнительно невелика, а скорость потребления энергии такова, что им вполне хватает аэробного метаболизма. Такие волокна отлично подходят для продолжительной и не интенсивной работы (стайерские дистанции в плавании, легкий бег и ходьба, занятия с легкими весами в умеренном темпе, аэробика), движений, не требующих значительных усилий, поддержании позы. Красные мышечные волокна включаются в работу при нагрузках в пределах 20-25% от максимальной силы и отличаются превосходной выносливостью.

Красные волокна не подойдут для подъема тяжелого веса, спринтерских дистанций в плавании, так как эти виды нагрузок требуют достаточно быстрого получения и расхода энергии.

Белые мышечные волокна

Белые мышечные волокна - это быстрые волокна большего по сравнению с красными волокнами диаметра, которые используют для получения энергии в основном гликолиз (анаэробная система энергообразования). Другие названия этих волокон: быстрые, быстросокращающиеся мышечные волокна, волокна 2 типа, а также FТ-волокна (fast twitch fibres).

В быстрых волокнах меньше миоглобина, поэтому они выглядят белее.

Для белых мышечных волокон характерна высокая активность фермента АТФазы, следовательно АТФ быстро расщепляется с получением большого количества необходимой для интенсивной работы энергии. Так как FТ-волокна обладают высокой скоростью расхода энергии, они требуют и высокой скорости восстановления молекул АТФ, которую может обеспечить только процесс гликолиза, потому что в отличие от процесса окисления (аэробное энергообразование) он протекает непосредственно в саркоплазме мышечных волокон, и не требует доставки кислорода митохондриям, и доставки энергии от них уже к миофибриллам. Гликолиз ведет к образованию быстро накапливающейся молочной кислоты (лактата), поэтому белые волокна быстро устают, что в конечном итоге останавливает работу мышцы. При аэробном энергообразовании в красных волокнах молочная кислота не образуется, поэтому они способны долго поддерживать умеренное напряжение.

Белые волокна имеют больший диаметр по сравнению с красными, в них также содержится гораздо большее количество миофибрилл и гликогена, но меньше количество митохондрий. В белых волокнах находится и креатинфосфат (КФ), необходимый на начальном этапе высокоинтенсивной работы.

Белые волокна больше всего подходят для совершения быстрых, мощных, но кратковременных (так как они обладают низкой выносливостью) усилий. По сравнению с медленными волокнами, FT-волокна могут в два раза быстрее сокращаться и развивать в 10 раз большую силу. Максимальную силу и скорость человеку позволяют развить именно белые волокна. Работа от 25-30% и выше означает, что в мышцах работают именно FТ-волокна.

В зависимости от способа получения энергии быстросокращающиеся мышечные волокна делят на два типа :

  1. Быстрые гликолитические волокна (FTG-волокна) . Эти волокна используют процесс гликолиза для получения энергии, т.е. могут использовать исключительно анаэробную систему энергообразования, которая способствует образованию лактата (молочной кислоты). Соответственно, эти волокна не могут производить энергию аэробным способом с участием кислорода. Быстрые гликолитические волокна обладают максимальной силой и скоростью сокращений. Эти волокна играют первостепенную роль при наборе массы в бодибилдинге и обеспечивают пловцам и бегунам спринтерам максимальную скорость.
  2. Быстрые окислительно-гликолитические волокна (FTO-волокна) , иначе промежуточные или переходные быстрые волокна. Эти волокна представляют собой как бы промежуточный тип между быстрыми и медленными мышечными волокнами. FTO-волокна обладают мощной анаэробной системой энергообразования, но они приспособлены также и к выполнению достаточно интенсивной аэробной работы. То есть они могут развивать значительные усилия и развивать высокую скорость сокращения, используя гликолиз в качестве основного источника энергии, и в то же время, при низкой интенсивности сокращения, эти волокна довольно эффективно могут использовать и окисление. Промежуточный тип волокон включается в работу при нагрузке 20-40% от максимума, но когда нагрузка достигает приблизительно 40% организм уже полностью переключается на FTG-волокна.
Быстрые волокна вносят основной вклад в достижение спортивных успехов в тех видах спорта, где требуется взрывная сила и развитие максимальной скорости в течении короткого времени: плавание на спринтерские дистанции, бег на короткие дистанции, бодибилдинг и пауэрлифтинг, тяжелая атлетика, бокс и боевые искусства.

Последовательность включения в работу волокон разных типов

Название быстрое или медленное волокно вовсе не означает, что быстрые движения осуществляются только белыми мышечными волокнами, а медленные - только красными. Для включения в работу тех или иных мышечных волокон имеет значение лишь сила, которую нужно приложить для осуществления движения и ускорение которое нужно придать телу.

Разберем последовательность включения в работу разных типов мышечных волокон на примере бега. Первыми при начале движения в работу всегда включаются медленные красные волокна. Если требуется легкое усилие, не превышающее 25% от максимума, как, например, при беге трусцой, то работа будет осуществляться за счет их сокращений. Такая работа может осуществляться долго, потому что красные волокна обладают большой выносливостью. По мере увеличения интенсивности нагрузки свыше 20-25% (например, мы решили бежать быстрее), в работу будут включаться быстрые окислительно-гликолитические волокна (FTO-волокна). Когда интенсивность нагрузки возрастет еще больше, к работе начнут подключаться и быстрые гликолитические волокна (FTG-волокна). При нагрузке более 40% от максимума (например во время финального рывка) работа будет выполняться именно за счет быстрых FTG-волокон. Белые гликолитические волокна – самые сильные и быстросокращающиеся, но из-за накопления молочной кислоты, появляющейся в процессе гликолиза, они быстро утомляются. Поэтому мышцы не могут долго работать в режиме нагрузки высокой интенсивности.

А что если мы не плавно набираем скорость, а, например, плывем спринт 50 метров или поднимаем штангу? В таком случае, при резких, взрывных движениях промежуток между началом сокращения медленных и быстрых мышечных волокон минимальный и составляет всего несколько миллисекунд. Получается, что оба типа мышечных волокон начинают сокращаться практически одновременно.

Что мы получаем: при длительной нагрузке в умеренном темпе, работают в основном красные волокна. Благодаря их аэробному способу получения энергии, при длительной аэробной нагрузке (более получаса), сжигаются не только углеводы, но и жиры. Поэтому можно похудеть на беговой дорожке или плавая на стайерские дистанции и сложно это сделать на занятиях с высокоинтенсивной нагрузкой, например на тренажерах. Зато на тренировках, имеющих целью увеличение силы, мышцы прибавляются в объеме значительно больше, чем при аэробных тренировках на выносливость. Это происходит в основном за счет утолщения быстрых волокон (исследования показали, что красные мышечные волокна обладают слабой способностью к гипертрофии.

Соотношение медленных и быстрых волокон в организме

В процессе исследований было установлено, что соотношение медленных и быстрых мышечных волокон в организме обусловлено генетически . У среднестатистического человека примерно 40-50% медленных и 50-60% быстрых мышечных волокон. Но каждый человек индивидуален, поэтому именно в Вашем организме могут преобладать, как красные, так и белые волокна.

В разных мышцах тела пропорциональное соотношение белых и красных мышечных волокон не одинаково. Дело в том, что разные мышцы и мышечные группы выполняют в организме различные функции, поэтому они могут достаточно сильно отличатся по составу мышечных волокон. Например, в бицепсе и трицепсе около 70% белых волокон, в бедре 50%, а в икроножной мышце всего 16%. Таким образом, чем более динамичная работа входит в функциональную задачу мышцы, тем больше в ней будет содержаться быстрых волокон.

Мы уже знаем, что общее соотношение в организме белых и красных мышечных волокон заложено генетически. Именно поэтому у разных людей и существует разный потенциал в занятиях силовыми или наоборот выносливыми видами спорта. При преобладании медленных мышечных волокон, гораздо больше подходят такие виды спорта как плавание на длинные дистанции, марафонский бег, лыжи и т.п., то есть те виды спорта, где задействована в основном аэробная система энергообразования. Чем больше в организме доля быстрых мышечных волокон, тем лучших результатов можно достигнуть в спринтерском плавании, беге на короткую дистанцию, бодибилдинге, пауэрлифтинге, тяжелой атлетике, боксе и других видах спорта, где первостепенное значение имеет взрывная энергия, которую могут обеспечить только быстрые мышечные волокна. У выдающихся спортсменов - спринтеров быстрые мышечные волокна всегда преобладают, их количество в мышцах ног доходит до 85%. Для тех, у кого волокон разных типов примерно поровну прекрасно подойдут средние дистанции в плавании и беге. Все вышесказанное не означает, что если у человека преобладают быстрые волокна, то он никогда не сможет пробежать марафонскую дистанцию. Марафон он пробежит, но чемпионом в этом виде спорта точно никогда не станет. И наоборот, результаты в бодибилдинге человека, в организме которого значительно больше красных волокон, будут хуже, чем у среднестатистического, имеющего примерно равное соотношение белых и красных волокон.

Может ли меняться пропорциональное содержание быстрых и медленных волокон в организме в результате тренировок? Здесь данные противоречивы. Одни утверждают, что это соотношение неизменно и никакие тренировки не могут изменить генетически заданной пропорции. Другие данные свидетельствуют о том, что при упорных тренировках часть волокон может поменять свой тип: так силовой тренинг в бодибилдинге может увеличить количество быстрых мышечных клеток, а при аэробных тренировках увеличивается содержание медленных клеток. Однако эти изменения довольно ограничены и переход одного типа в другой не превышает 10%.

Подведем итоги:

Параметры оценки

Тип мышечного волокна

FT-волокна (быстрые)

ST-волокна (медленные)

FTG-волокна

FTO-волокна

скорость сокращения

Тонкие мышечные волокна формируют каждую скелетную мышцу. Их толщина составляет всего около 0,05-0,11 мм, а длина достигает 15 см. Мышечные волокна поперечно-полосатой мышечной ткани собраны в пучки, в состав которых входит по 10-50 волокон. Эти пучки окружены соединительной тканью (фасцией).

Мышца сама по себе также окружена фасцией. Около 85-90 % ее объема составляют мышечные волокна. Оставшаяся часть - нервы и кровеносные сосуды, которые проходят между ними. На концах мышечные волокна поперечно-полосатой мышечной ткани постепенно переходят в сухожилия. Последние же крепятся к костям.

Митохондрии и миофибриллы в мышцах

Рассмотрим строение мышечного волокна. В цитоплазме (саркоплазме) его находится большое количество митохондрий. Они играют роль электростанций, в которых происходит обмен веществ и накапливаются богатые энергией вещества, а также те, которые нужны для обеспечения энергетических потребностей. В составе любой мышечной клетки имеется несколько тысяч митохондрий. Они занимают примерно 30-35 % общей ее массы.

Строение мышечного волокна таково, что цепочка из митохондрий выстраивается вдоль миофибрилл. Это тонкие нити, обеспечивающие сокращение и расслабление наших мышц. Обычно в одной клетке находятся несколько десятков миофибрилл, при этом длина каждой может доходить до нескольких сантиметров. Если сложить массу всех миофибрилл, входящих в состав мышечной клетки, то ее процентное соотношение от общей массы будет около 50 %. Толщина волокна, таким образом, зависит в первую очередь от числа миофибрилл, находящихся в нем, а также от их поперечного строения. В свою очередь, миофибриллы состоят из большого количества крохотных саркомеров.

Поперечно-полосатые волокна свойственны мышечным тканям как женщин, так и мужчин. Однако их строение несколько отличается в зависимости от пола. По результатам биопсии мышечной ткани были сделаны выводы о том, что в мышечных волокнах женщин процент миофибрилл ниже, чем у мужчин. Это относится даже к спортсменкам высокого уровня.

Кстати, сама распределена неодинаково по телу у женщин и мужчин. Подавляющая ее часть у женщин находится в нижней части тела. В верхней же объемы мышц невелики, а сами они мелкие и зачастую вовсе нетренированные.

Красные волокна

В зависимости от утомляемости, гистохимической окраски и сократительных свойств мышечные волокна делятся на следующие две группы: белые и красные. Красные представляют собой медленные волокна, имеющие небольшой диаметр. Для того чтобы получить энергию, они используют и углеводов (такая система энергообразования называется аэробной). Эти волокна называют также медленными или медленносокращающимися. Иногда их именуют волокнами 1 типа.

Почему красные волокна получили такое название

Красными они называются из-за того, что имеют красную гистохимическую окраску. Это объясняется тем, что в этих волокнах содержится множество миоглобина. Миоглобин - особый пигментный белок, имеющий красный цвет. Его функция состоит в том, что он доставляет кислород вглубь мышечного волокна от капилляров крови.

Особенности красных волокон

Медленные мышечные волокна имеют множество митохондрий. В них осуществляется процесс окисления, который необходим для получения энергии. Красные волокна окружены большой сетью капилляров. Они нужны для доставки большого объема кислорода вместе с кровью.

Медленные мышечные волокна хорошо приспособлены к осуществлению аэробной системы энергообразования. Сравнительно невелика сила их сокращений. Скорость, с которой они потребляют энергию, является достаточной для того, чтобы обходиться только аэробным метаболизмом. Красные волокна прекрасно подходят для осуществления неинтенсивной и продолжительной работы, такой как ходьба и легкий бег, стайерские дистанции в плавании, аэробика и др.

Сокращение мышечного волокна обеспечивает выполнение движений, которые не требуют больших усилий. Благодаря ему также поддерживается поза. Эти поперечно-полосатые волокна свойственны мышечным тканям, которые включаются в работу при нагрузках, находящихся в пределах от 20 до 25 % от максимума возможной силы. Они характеризуются отличной выносливостью. Однако красные волокна не работают при осуществлении спринтерских дистанций, подъеме тяжелого веса и др., поскольку эти типы нагрузок предполагают довольно быстрый расход и получение энергии. Для этого предназначены белые волокна, о которых мы сейчас и поговорим.

Белые волокна

Их называют также быстрыми, быстросокращающимися волокнами 2 типа. Их диаметр больше по сравнению с красными. Для получения энергии они используют главным образом гликолиз (то есть система энергообразования у них анаэробная). В быстрых волокнах находится меньшее количество миоглобина. Именно поэтому они являются белыми.

Расщепление АТФ

Быстрым волокнам свойственна большая активность фермента АТфазы. Это значит, что расщепление АТФ происходит быстро, при этом получается большое количество энергии, которая нужна для интенсивной работы. Поскольку белые волокна характеризуются большой скоростью расхода энергии, им необходима и большая скорость восстановления АТФ-молекул. А ее способен обеспечить лишь процесс гликолиза, так как, в отличие от окисления, он происходит в саркоплазме волокон мышц. Поэтому доставка кислорода митохондриям не требуется, как и доставка энергии от последних к миофибриллам.

Почему белые волокна быстро устают

Благодаря гликолизу происходит образование лактата (молочной кислоты), быстро накапливающегося. Из-за этого белые волокна устают достаточно быстро, что останавливает в конечном счете работу мышцы. В красных волокнах при аэробном образовании не образуется Именно поэтому они могут поддерживать умеренное напряжение в течение длительного времени.

Особенности белых волокон

Белые волокна характеризуются большим диаметром относительно красных. Кроме того, в них содержится намного больше гликогена и миофибрилл, однако митохондрий в них меньше. Клетка мышечного волокна этого типа имеет в своем составе и креатинфосфат (КФ). Он требуется на начальном этапе осуществления высокоинтенсивной работы.

Больше всего белые волокна приспособлены для совершения мощных, быстрых, но кратковременных усилий, поскольку у них низкая выносливость. Быстрые волокна, по сравнению с медленными, способны сокращаться в 2 раза быстрее, а также развивать силу, в 10 раз большую. Максимальную скорость и силу человек развивает именно благодаря им. Если работа требует 25-30 % максимального усилия и выше, это значит, что участие в ней принимают именно белые волокна. Их делят по способу получения энергии на следующие 2 типа.

Быстрые гликолитические волокна мышечной ткани

Первый тип - быстрые гликолитические волокна. Процесс гликолиза используется ими для получения энергии. Другими словами, они способны применять только анаэробную систему энергообразования, способствующую образованию молочной кислоты (лактата). Соответственно, данные волокна не производят энергию с участием кислорода, то есть аэробным путем. Быстрые гликолитические волокна характеризуются максимальной скоростью сокращений и силой. Они играют главную роль при наборе массы у спортсменов-бодибилдеров, а также обеспечивают бегунам и пловцам, выступающим на спринтерских дистанциях, максимальную скорость.

Быстрые окислительно-гликолитические волокна

Второй тип - быстрые окислительно-гликолитические волокна. Их называют также переходными или промежуточными. Данные волокна являются своего рода промежуточным типом между медленными и быстрыми мышечными волокнами. Они характеризуются мощной системой энергообразования (анаэробной), однако приспособлены и к осуществлению довольно интенсивной аэробной нагрузки. Другими словами, эти волокна могут развивать большие усилия и высокую скорость сокращения. При этом основным источником энергии является гликолиз. В то же время, если интенсивность сокращения становится низкой, они способны достаточно эффективно использовать окисление. Этот тип волокон задействуется в работе, если нагрузка составляет от 20 до 40 % от максимума. Однако, когда она составляет около 40 %, организм человека сразу же полностью переходит на использование быстрых гликолитических волокон.

Соотношение быстрых и медленных волокон в организме

Были проведены исследования, в процессе которых был установлен тот факт, что соотношение быстрых и медленных волокон в человеческом организме обусловливается генетически. Если говорить о среднестатистическом человеке, у него около 40-50 % медленных и примерно 50-60 % быстрых. Однако каждый из нас индивидуален. В организме конкретного человека могут преобладать как белые, так и красные волокна.

Пропорциональное соотношение их в различных мышцах тела также не одинаково. Это объясняется тем, что мышцы и их группы в организме выполняют различные функции. Именно из-за этого поперечные мышечные волокна довольно сильно отличаются по своему составу. К примеру, в трицепсе и бицепсе находится примерно 70 % белых волокон. Немного меньше их в бедре (около 50 %). А вот в икроножной мышце этих волокон всего 16 %. То есть если в функциональную задачу той или иной мышцы входит более динамичная работа, в ней будет больше быстрых, а не медленных.

Связь потенциала в спорте с типами мышечных волокон

Нам уже известно о том, что общее соотношение красных и белых волокон в человеческом организме заложено генетически. Из-за этого у разных людей и есть разный потенциал в спортивных занятиях. Кому-то лучше даются виды спорта, требующие выносливость, а кому-то - силовые. Если преобладают медленные волокна, человеку намного больше подходят лыжи, заплывы на длинные дистанции и т. д., то есть виды спорта, в которых задействована главным образом аэробная система энергообразования. Если же в организме больше быстрых мышечных волокон, то можно добиться хороших результатов в бодибилдинге, беге на короткие дистанции, спринтерском плавании, тяжелой атлетике, пауэрлифтинге и др. видах, где главное значение принадлежит взрывной энергии. А ее, как вы уже знаете, могут обеспечить лишь белые мышечные волокна. У великих спортсменов-спринтеров всегда преобладают именно они. Количество их в мышцах ног достигает у них 85 %. Если же наблюдается примерно равное соотношение различных типов волокон, человеку отлично подойдут средние дистанции в беге и плавании. Однако сказанное выше вовсе не означает, что если преобладают быстрые волокна, такому человеку никогда не удастся пробежать марафонскую дистанцию. Он пробежит ее, однако точно не станет чемпионом в данном виде спорта. И наоборот, если в организме намного больше красных волокон, результаты в бодибилдинге будут у такого человека хуже, нежели у среднестатистического, соотношение красных и белых волокон у которого примерно равное.

Мышцы или мускулы - важнейшая составляющая опорно-двигательного аппарата, обладающая сократительной способностью. Именно благодаря возможности мышечных тканей сокращаться, человек может выполнять всяческие движения, начиная с самых простых (моргание и улыбка) и заканчивая максимально тонкими (как у ювелиров) и энергичными (как у спортсменов). Функциональность мышечного скелета напрямую связана с составом его главных структурных единиц - мышечных волокон. Сегодня мы с вами рассмотрим структуру мышечных волокон, их классификацию и роль в двигательной активности человека.

Почему мышцы сокращаются

Волокна скелетных мышц соединяются со спинным мозгом посредством толстых нервных волокон. После попадания в мускул каждое из нервных волокон делится на сотни разветвлений, которые снабжают сотни мышечных волокон. Соединение между нервом и волокном мышечной ткани называют синапсом, или нервно-мышечным соединением. Примечательно, что на каждом мышечном волокне может формироваться только один синапс. При соответствующем нервном сигнале возникает потенциал действия, который передается по нервам от спинного мозга к мускулам.

От свойств мышечных волокон зависит то, как мускулатура адаптируется к повторяющимся сигналам. Именно типы волокон обуславливает предрасположенность спортсмена к той или иной тренировочной программе. Во время тренировки происходит гипертрофия мышечных волокон - увеличение их объема и массы. При этом важно понимать, что количество волокон не изменяется и обуславливается генетическими особенностями того или иного человека.

Состав

В состав мышечного волокна входят:

  1. Миофибриллы. Выполняют сократительную функцию.
  2. Митохондрии. Отвечают за продуцирование энергии.
  3. Ядра. Отвечают за регуляцию.
  4. Сарколемма. Представляет собой соединительнотканную оболочку.
  5. Ретикулум (саркоплазматический или эндоплазматический). Представляет собой депо кальция, который необходим для возбуждения миофибриллы.
  6. Капилляры. Отвечают за поставку кислорода и питательных веществ.

Типы мышечных волокон

Волокна скелетных мышц могут иметь различные механические и метаболические свойства. Классификация волокон основана на различии в максимальной скорости их сокращения (быстрые и медленные) и метаболическом пути, который используется ими для образования аденозинтрифосфата (АТФ) (окислительные и гликолитические). В целом мышечные волокна делятся на медленные окислительные и быстрые гликолитические.

Медленные окислительные

Тонкие волокна этого типа хорошо снабжаются кровью и содержат много миоглобина, придающего им красную окраску (поэтому их часто называют красными). Они также отличаются низким порогом активации мотонейрона, медленным сокращением и наличием большого количества крупных митохондрий, которые содержат ферменты окислительного фосфорилирования. Медленные мышечные волокна, по сравнению с быстрыми, содержат больше миозина и меньше фермента аденозинтрифосфатазы (АТФазы). Иннервация медленных окислительных волокон обеспечивается малыми альфа-мотонейронами спинного мозга. Из-за неспешного сокращения такие волокна хорошо приспособлены к длительной нагрузке.

Быстрые гликолитические

Толстые волокна этого типа отличаются высокой скоростью сокращения, большой силой и быстрой утомляемостью. Они хуже снабжаются кровью, нежели предыдущий тип, имеют меньше митохондрий, миоглобина и липидов. Этим обусловлена светлая окраска быстрых мышечных волокон, за которую их нарекли «белыми». В отличие от предыдущего вида они содержат в себе главным образом ферменты анаэробного окисления и миофибриллы, в состав которых входит небольшое количество миозина. Вместе с тем, этот миозин способен быстро сокращаться и лучше металлизировать АТФ. Кроме того, в быстрых волокнах более ярко выражено наличие саркоплазматического ретикулума. Так как сокращение и утомление этих волокон происходит быстро, они задействуются в кратковременной взрывной работе. Иннервация быстрых мышечных волокон осуществляется большими альфа-мотонейронами спинного мозга.

Быстрые волокна подразделяются на два типа:

  • IIa: быстрые окислительно-гликолитические. Их часто называют просто «быстрыми окислительными». Средние по толщине волокна обладают большей силой, чем волокна типа IIb, но быстрее утомляются и обладают способностью к выраженному сокращению. Источниками энергии для волокон этого типа служат как окислительные, так и анаэробные процессы.
  • IIb: быстрые гликолитические волокна. Обладают большими размерами, высоким порогом активации мотонейрона и быстрой утомляемостью. Активация происходит при кратковременных нагрузках, требующих большой силы. Данный тип волокон получает энергию через анаэробное окисление. Отличаются большим содержанием гликогена и малым содержанием митохондрий.

Кроме того, иногда выделяют еще один тип быстрых волокон - IIc. Волокна этого типа могут проявлять и окислительную, и гликолитическую функцию. Их доля в мускулах не превышает одного процента. В зависимости от типа нагрузок волокна типа IIc могут переходить в волокна других типов.

Быстрые или медленные

Принадлежность мышечных волокон к быстрым или медленным зависит от активности миозиновой АТФазы, которая обуславливает скорость сокращения мускулов. Активность указанного фермента наследуется, поэтому изменить соотношение быстрых и медленных волокон с помощью тренировок нельзя.

Благодаря АТФазе происходит высвобождение энергии, заключенной в АТФ. Энергии одной молекулы аденозинтрифосфата достаточно, чтобы миозиновые мостики сделали один поворот («гребок»). Скорость одиночного «гребка» у всех видов мускулов одинакова. В волокнах, содержащих высокоактивную АТФазу, гребок происходит быстрее, а значит за определенную единицу времени волокно сокращается большее количество раз.

В медленных окислительных волокнах, обладающих способностью к окислительному фосфорилированию, содержится много митохондрий. В таких волокнах в значительном количестве могут содержаться липиды, и в незначительном - гликоген. Основное количество АТФ, произведенного этими волокнами, прямо зависит от топливных молекул и снабжения кровеносной системы кислородом. Они окружены большим количеством капилляров и содержат в себе много миоглобина, увеличивающего поглощение кислорода тканями и способствующего небольшому накоплению кислорода внутри клеток. В быстрых волокнах митохондрий мало, но их концентрация гораздо большая, равно как и концентрация гликолитических ферментов и гликогена.

Гликолитические, промежуточные или окислительные

Как правило, гликолитические волокна больше в диаметре, нежели окислительные. Чем больше диаметр, тем большего растяжения они могут достичь и тем больше их сила. Классификация основана на окислительном потенциале мускула, то есть количестве митохондрий, содержащихся в мышечном волокне. Митохондриями называют клеточные органеллы, в которых глюкоза или жир распадаются на углекислый газ и воду, ресинтезируя при этом АТФ, которая, в свою очередь, ресинтезирует креатинфосфат. Ну а креатинфосфат необходим для ресинтеза миофибриллярных молекул АТФ, использующегося в мышечном сокращении. Вне митохондрий расщепление глюкозы до пирувата и ресинтез АТФ также возможно, однако в таком случае в мышечных тканях образуется молочная кислота, которая вызывает их утомление.

По описанному выше признаку, волокна мышечной ткани делятся на три группы:

  1. Окислительные. Содержание в них митохондрий настолько велико, что в процессе тренировки их прибавки не происходит.
  2. Промежуточные. Количество митохондрий в них снижено, и во время работы мускула в нем накапливается молочная кислота. Происходит это довольно медленно.
  3. Гликолитические. Содержат малое количество митохондрий, поэтому процесс анаэробного гликолиза с накоплением молочной кислоты является в них преобладающим.

Соотношение волокон

У людей, которые не занимаются спортом, как правило, быстрые волокна являются гликолитическими или промежуточными, а медленные - окислительными. Тем не менее при грамотных тренировках быстрые мышечные волокна могут переходить из гликолитических в промежуточные, а из промежуточных в окислительные. Речь идет о развитии выносливости. А при тренировках, нацеленных на развитие силы, промежуточные волокна переходят в гликолитические. При этом соотношение быстрых и медленных мышечных волокон предопределено генетически, поэтому практически не меняется путем тренировки. Возможен переход 1-3%, но не более.

Мускулы обладают разным процентным соотношением белых и красных волокон. Следовательно, скорость сокращения, сила и выносливость разных мышечных групп отличается. К примеру, икроножная мышца содержит больше быстрых волокон, которые придают ей способность к быстрому и сильному сокращению, используемому, например, во время прыжка. Вместе с тем, камбаловидная мышца, соседствующая с икроножной, наоборот, содержит больше медленных волокон, так как она отвечает за длительную активность ног.

Соотношение основных видов волокон мышечной ткани определяет спортивную предрасположенность разных людей. Именно поэтому не существует универсальных атлетов.

Высокопороговые и низкопороговые

Кроме всего прочего, мышечные волокна также подразделяются по уровню порога возбудимости. Мускул сокращается, когда на него воздействуют нервные импульсы, имеющие электрическую природу. Двигательная единица (ДЕ) состоит из: мотонейрона, аксона и совокупности мышечных волокон. Количество ДЕ в теле человека не меняется на протяжении всей жизни. Каждая из двигательных единиц имеет свой порог возбудимости. Если мозг посылает нервные импульсы с частотой ниже этого порога, значит ДЕ пассивна. Если же нервные импульсы имеют пороговую частоту, или превышают ее, то волокна мышц активируются и сокращаются. У низкопороговых ДЕ некрупные мотонейроны, тонкий аксон и иннервируемые медленные волокна, исчисляемые сотнями. Высокопороговые ДЕ отличаются крупными мотонейронами, толстым аксоном и тысячами иннервируемых быстрых волокон.

Таким образом, медленные окислительные волокна относятся к низкопороговым и возбуждаются при незначительной нагрузке. А быстрые волокна, соответственно, относятся к высокопороговым и активируются только при интенсивных нагрузках.

Миозин

Существенное различие разных видов мышечных волокон обуславливает значительную гетерогенность мышечных тканей и их способность к выполнению разнообразных функциональных задач. Биохимический и иммуногистохимический анализ скелетных мускулов показывает, что структурное и функциональное разнообразие мышечных волокон обуславливается широким спектром изоформ миозина. Миозином называется фибриллярный белок, выступающий одним из главных компонентов сократительных мышечных волокон. Он составляет от 40 до 60% общего количества мышечного белка в организме. При соединении миозина с актином (еще один мышечный белок) образуется актомиозин - основной элемент сократительной системы мускулов.

В состав молекулы миозина входит две тяжелых цепи (MyHC) и четыре легких (MyLC). Тяжелые цепи имеют несколько изоформ, свойства которых обуславливают силовые и скоростные показатели мышечных волокон. Наиболее важными считаются четыре изоформы: MyHCI, MyHCIIA, MyHCIIX/IID, и MyHCIIB. Каждая изоформа имеет специфическую скорость сокращения и позволяет развить определенное усилие. Волокна, в состав которых входит MyHCI, по сравнению с волокнами, содержащими другие формы тяжелой цепи миозина, медленнее сокращаются и развивают меньшее усилие. Наиболее быстрыми и сильными считаются волокна, содержащие MyHCIIB изоформу тяжелой цепи. За ними следует MyHCIIX и MyHCIIA форма.

Физическая активность может привести к весомым изменениям сократительных свойств мускулов. Принято считать, что при тренировке на выносливость увеличивается количество медленных изоформ миозина. Вместе с тем во время силовой тренировки происходит увеличение количества MyHCIIA и уменьшение MyHCIIX. Кроме того, считается, что у основной массы людей, активность которых ограничивается простыми бытовыми делами, волокна, содержащие миозин в форме MyHCIIX, крайне редко вовлекаются в работу. В процессе физической тренировки они начинают задействоваться и постепенно переходят в MyHCIIA форму. Дело в том, что волокна, содержащие IIA изоформу тяжелой цепи миозина, имеют большую выносливость, по сравнению волокнами IIX типа.

Во время тренировок выносливости или силы происходит весомое изменение гормонального фона скелетных мускулов, которое служит мощным сигналом, запускающим процесс изменения состава миозина в мускулах, подвергающихся нагрузке.

Заключение

Резюмируя вышесказанное, стоит отметить, что мышечные волокна являются главной структурной единицей мышечного скелета. Соотношение белых и красных волокон является генетическим фактором, равно как и общее количество волокон в мускуле. При правильной тренировке можно не только увеличить объем и массу мышечных волокон, но и добиться изменениях их гликолитических и окислительных свойств.

Во время тренировок для жиросжигания или набора массы, нужно задействовать разные типы мышечных волокон. О том, какие они бывают и как определить соотношение мышечных волокон в теле, читайте в статье.

Занимаясь спортом, мы постоянно употребляем слово «мышцы». Мы говорим про то, что они работают, болят, растут или не растут и так далее. Как правило, дальше этого наши знания о мышцах не заходят. Тем не менее, очень важно понимать, что по своему составу мышцы могут быть разные, и предрасположены к разного рода нагрузке.

Что такое мышцы?

Мышца – это орган, который состоит из волокон и способен к сокращению под воздействием нервных импульсов, посылаемых головным мозгом посредством связи «мозг-мышцы» . Соответственно, главные функции мышечного волокна в контексте спорта – осуществление движений и поддержание положения тела.

Мышечные волокна бывают двух типов – медленные (ММВ ) или красные, и быстрые (БМВ ) или белые.

Медленные (красные) мышечные волокна

Эти волокна называются медленными, потому что они обладают низкой скоростью сокращения и максимально приспособлены к выполнению продолжительной непрерывной работы. Они окружены сетью капилляров, которые постоянно доставляют кислород. Также эти волокна называют красными из-за своего цвета. Цвет обуславливает белок миоглобин . Этот тип волокон способен получать энергию не только из углеводов, но и из жиров.

Когда включаются в работу ММВ

ММВ начинают сокращаться при выполнении разного вида кардионагрузки, которые требуют выносливости:

Т.е. во всех случаях, когда Вы совершаете достаточно длительную и монотонную работу, которая не требует «взрывных» усилий. А значит интервальную кардиотренировку уже нельзя будет отнести к примеру работы исключительно ММВ.

Тренировка ММВ направлена на:

  • увеличение выносливости
  • избавление от жира
  • увеличения количества кровеносных капилляров

Быстрые (белые) мышечные волокна

По аналогии с медленными, можно догадаться, что быстрые мышечные волокна способны к высокоинтенсивной, тяжелой, но кратковременной работе. Эти волокна используют бескислородный способ получения энергии, а значит используют, главным образом, углеводы. Именно поэтому они белого цвета. Их быстрое утомление связано с тем, что во время сокращения мышечного волокна образуется молочная кислота и, чтобы вывести её, необходимо некоторое время.

Но белые мышечные волокна также бывают разными.

Подтипы быстрых мышечных волокон:

подтип 2A или промежуточные мышечные волокна

Их ещё называют переходными, потому что эти волокна могут использовать как аэробный так и анаэробный способ получения энергии. По сути, это что-то среднее между красными и белыми волокнами.

подтип 2Б или истинные БМВ

Эти волокна используют только анаэробный (бескислородный) способ получения энергии и обладают максимальной силой. Они способны к существенному росту, поэтому все программы по набору мышечной массы рассчитаны на работу именно этих волокон.

Когда включаются в работу БМВ

Это происходит, когда нужно приложить максимум усилий в короткий промежуток времени. Т.е. при анаэробных тренировках :

  • бодибилдинг
  • пауэрлифтинг
  • тяжелая атлетика
  • спринтерский бег и плавание
  • боевые искусства

Эти тренировки способствуют увеличению мышцы в объёме за счёт увеличения поперечного сечения мышечного волокна.

Тренировка БМВ направлена на:

  • увеличение силы
  • увеличение мышечной массы

Может ли меняться соотношение быстрых и медленных мышечных волокон в теле

На этот счёт существует несколько мнений и, как обычно, в защиту каждого из них приводят различные доводы.

Считается, что первостепенное соотношение мышечных волокон заложено в нас генетически и именно поэтому одним людям намного легче даётся бег, а другим силовая нагрузка. Но с другой стороны, исследуя людей, занимающихся разными видами спорта, было выявлено, что, например, у тяжелоатлетов преобладают быстрые мышечные волокна, а у марафонцев медленные. Соответственно, предполагают, что тренировки способны немного «перераспределять» соотношение и количество мышечных волокон в теле. Хотя, относительно второго подхода, не совсем понятно, было ли причиной преобладания тех или иных волокон определённый вид спорта, или всё-таки этот выбор спорта был последствием генетических задатков.

Ещё один важный момент, который нужно понимать – мышцы и волокна – это не одно и то же. Все крупные мышцы тела состоят из разных видов мышечных волокон. Не существует абсолютно «быстрых» и «абсолютно» медленных мышц, просто в них может преобладать то или иное мышечное волокно.

Как определить какие мышечные волокна преобладают

Это можно сделать, отдав образцы тканей в лабораторию для исследования, или самостоятельно провести тест на соотношение мышечных волокон . Рассмотрим как это делать на примере упражнения подъём гантелей на бицепс:

  • 1) необходимо подобрать такой вес гантелей, при котором Вы сможете выполнить только одно повторение этого упражнения – это будет максимальный вес
  • 2) после этого нужно отдохнуть около 15 минут и выполнить это упражнение с весом, составляющим 80% от максимального ровно столько раз, сколько получится сделать это без дополнительной помощи
  • 3) на основании полученного количества раз интерпретировать результаты
  • 4) проделать тоже самое со всеми основными группами мышц

Интерпретация результатов теста

Подводя итог, хочу сказать, что информация и типах мышечных волокон нужна Вам для того, чтобы понимать какое качество можно развить, задействуя, те или иные волокна. Так, если основная цель – развитие выносливости, то неразумно заниматься силовыми тренировками. И соответственно, выполняя монотонное кардио, Вы не сможете добиться увеличения мышечной массы.

А чтобы получать больше полезной информации каждый день, подпишитесь на наш .

Видимо, одного желания мало, чтобы заниматься культуризмом и регулярно ходить в спортивный зал. Для того чтобы занятия приносили пользу, надо хорошо представлять, что происходит внутри организма. На этот счет много мнений и теорий. Одна из них, как тренируются быстрые и медленные мышечные волокна.

Начнем с признания факта, что в нашем теле есть два вида мышц. Одни имеют белый цвет, а другие красный. На этом их разница не ограничивается. Это две совершенно разных по принципу действия волоконные структуры. Белые волокна могут совершать очень большой объем работы за маленький отрезок времени. Красные волокна делают небольшой объем работы, но длительное время. Вот такая разница между ними. Но и это еще не все.

Чтобы подробно рассмотреть, как это работает, решим вначале задачу, а зачем это все нам нужно. Есть же проверенная теория, методики, остается только скрупулезно выполнять и через какое-то время ждать результата. Так-то оно так, но ведь можно получить большой объем мышц гораздо проще и быстрее, если понять, что и как тренируется.

  • Белые волокна используют энергию гликолиза и в кислороде не нуждаются. Они способны в буквальном смысле как бы взорваться, принося спортсмену в начале первого десятка секунд победу. Именно эти мышцы стараются натренировать все спортсмены. Особенно штангисты или бегуны на короткие дистанции.
  • Красные волокна используют кислород, для расщепления жиров. Процесс этот не такой быстрый, как гликолиз, и требует времени, чтобы организм перестроился и начал вырабатывать энергию в больших объемах и длительное время. Этот тип мышц используют бегуны на длинных дистанциях, велосипедисты и пловцы, когда плывут большое расстояние.
  • Теперь определим, какие волокна лучше всего развивать человеку, который решил нарастить себе мышцы. Всегда считалось, что тренировать надо только быстрые волокна. Спор решил метод Биопсии. Заключался он в том, что изучался срез мышц у спортсменов и анализировался состав быстрых и медленных волокон. Во многих видах спорта у испытуемых во время теста преобладали белые мышцы. Поэтому было наглядно доказано, что медленные мышцы бесперспективны для тренировки

И только совсем недавно стали задумываться о том, чтобы их тоже использовать для увеличения массы тела. Какой-никакой, но это резерв, так рассуждали исследователи. И начались опыты. После анализа Биопсии у культуристов пришли к выводу, что медленные волокна тренируются ничуть не хуже, чем быстрые и размерами нисколько им не не уступают. Начали разбираться, в чем тут причина.

Анализ показал, что в спорте в основном нужны быстрые волокна. Вот все усилия спортсмена и тренера были направлены на их совершенствование, а медленные волокна практически не развивали. Отсюда и результат. А, в самом деле, как их развивать и вообще, почему мышцы начинают увеличиваться. Есть же скрытый механизм, который запускает этот процесс. Стало заманчивым изучить его, чтобы потом использовать.

Особенности тренировки бодибилдера

Перед спортсменом, который увеличивает свои мышцы, стоит другая задача.

  • Ему не надо увеличивать скорость, силу и выносливость. Поэтому он не тренирует только одну группу мышц.
  • Если в спорте требуется увеличение работоспособности мышцы, и уменьшение ее веса, то в бодибилдинге такой задачи нет. Наоборот, чем крупнее и рельефней мышцы, тем лучше.
  • И последнее, культуристы делают все возможное, чтобы каждая его мышца получила развитие.

Поэтому профессиональные культуристы опытным путем пришли к своим уникальным методикам тренировок, которые сильно отличаются от тренировок тяжелоатлетов. Быстрые мышечные волокна тяжелоатлеты тренируют при помощи быстрых движений и 80-90% от 1ПМ. Тренировка медленных мышечных волокон происходит совсем иначе.

Как работает Пампинг

Разберемся теперь, как и из-за чего растут мышцы.

  • Известно только что мышцы увеличиваются в размерах после стрессовых нагрузок, выработки аминокислоты и регулировки процесса при помощи гормонов.
  • Чтобы запустить рост мышечного волокна, нужно увеличить количества белка, а этот процесс связан с ДНК клетки.
  • ДНК имеет форму спирали и чтобы ее раскрутить нужно определенное количество ионов водорода. То есть, появляется водород в клетке – запускается механизм синтеза белка, и увеличиваются мышцы.

Теперь надо выяснить, откуда берется водород. Делая очередной подход, чтобы тренировались быстрые и медленные мышечные волокна, хорошо ощущается некоторое жжение. Это в тканях начинает накапливаться молочная кислота. Происходит это следующим образом. Во время сокращения мышц используется энергия молекулы АТФ. Восполняется она за счет расщепления глюкозы. Происходит реакция расщепления глюкозы на АТФ и молочной кислоты.

В результате, чем дольше будут длиться упражнения, тем больше молочной кислоты выделится в организм. Наступает момент, когда терпенью бывает предел, человек устал и ему нужен отдых. Когда стало понятным, откуда взялась кислота, теперь можно рассматривать путь образования ионов водорода. А он берется из реакции:

Молочная кислота = лактат + ион водорода

Вот теперь вся цепочка собралась. Выглядит она так:

Из АТФ получается АДФ плюс Молочная кислота плюс Ион водорода. Ион раскручивает молекулу ДНК, та синтезирует белок, и мышцы растут как на опаре. Значит, все наши усилия во время тренировки будут направлены на получение иона водорода. Как только это произойдет быстрые и медленные мышечные волокна после каждого занятия начнут увеличиваться на величину синтеза белка. Примерно так действует Пампинг, популярное направление для увеличения мышц.

Было одно время непонятным, почему небольшие нагрузки дают прекрасный эффект. Потом разобрались, что при помощи этой методики тренируются не быстрые мышечные волокна, а ткани с медленными волокнами. Они-то и дают прирост и не малый.

Суть метода заключалась в том, чтобы делать много повторений в каждом подходе с малым весом. Таким образом, в мышцах накапливается молочная кислота, а дальше смотри по цепочке. Тут еще придется рассмотреть некоторые особенности. Во время пампинга напряженными мышцами пережимаются сосуды. Кровь не может вывести накапливающиеся ионы водорода. И результат тренировки усиливается.

В тяжелой атлетике пампинг не используется. Отсюда объяснение, почему нет роста медленным волокнам. У стайеров и марафонцев тоже нет в тренировках программы по использованию процесса увеличения образования в их теле молочной кислоты. Все их движения, хоть и много раз повторяются, но имеют фазы работы и отдыха. Значит, ионы водорода не накапливаются, сигнала к росту мышц нет, поэтому и выглядят онитакими поджарыми.

Что сделать, чтобы начали расти медленные мышечные волокна

  • Во время тренировки надо делать столько движений, чтобы почувствовалось жжение в мышцах. Это будет говорить о выработке в них молочной кислоты.
  • Упражнения надо делать с постоянным напряжением всех мышц. Ни каких пауз на отдых во время движения.
  • Используйте нагрузку в пределах 30-50% от 1ПМ

Особенность техники выполнения этих упражнений заключается в медленном движении. На счет 2-3 – подъем тяжести, на 2-3 – ее опускание. Полностью руки не разгибаются, чтобы не дать мышцам паузу для отдыха.

Вычисляется 1ПМ по следующей методике. Если вы можете поднимать 40 килограмм 10 раз, а 50 только один раз, то это и есть ваш 1ПМ. 30-50% от 1ПМ будет 15-20 кг. Вот с этим весом и рекомендуется тренироваться, чтобы быстрые и медленные мышечные волокна тренировались по новой методике.

Похожие статьи